PART 1 - GENERAL

1.01 DESCRIPTION - General and Supplementary Conditions and Division 1- General Requirements applies to this section. Provide gas vapor barrier as indicated, specified and required.

A. Work in this section - principal items include:
 1. Gas vapor barrier providing protection from the following gases: Methane, other Hydrocarbon vapors in concentrations up to 20,000ppm, Hydrogen Sulfide, Radon
 2. Gas vapor barrier under single family homes.

B. Related work NOT in this section: excavation and backfilling, parge coat on masonry to receive gas vapor barrier membrane, mortar beds or concrete toppings over gas vapor barrier membranes, latex waterproofing, damp-proofing, flashing and sheet metal, joint sealers, soil sterilant, gas collection systems, gas monitoring, and drainage.

1.02 QUALITY ASSURANCE - Gas vapor barrier contractor/applicator shall be trained and approved by gas vapor barrier manufacturer, CETCO. A pre-installation conference shall be held prior to application of gas vapor barrier to assure proper substrate and installation conditions, to include contractor, applicator, architect/engineer and special inspector.

1.03 SUBMITTALS

A. Project Data - Submit manufacturer’s qualifications, product data and installation instructions for specific application.

B. Samples - Submit representative samples of the following for approval:
 1. Gas vapor barrier membrane material
 2. Protection board and/or protection mat
 3. Prefabricated drainage mat
 4. Geotextiles

1.04 DELIVERY, STORAGE AND HANDLING

Deliver materials to site in original unbroken packages bearing manufacturers label showing brand, weight, volume, and batch number. Store materials at site in strict compliance with manufacturer’s instructions. Do not allow materials to freeze in containers.

1.05 JOB CONDITIONS

A. Protect all adjacent areas not to receive gas vapor barrier. Where necessary, apply masking to prevent staining of surfaces to remain exposed wherever membrane abuts to other finish surfaces.

B. Perform work only when existing and forecasted weather conditions are within manufacturer’s recommendations for material and product used.

D. Ambient temperature shall be within manufacturer’s specifications. If winter conditions apply, we recommend the use of space of heaters and necessary cover (i.e. visqueen) to bring the ambient temperature to at least +45°F until the protection course and structural slab rebar or a mudslab protection course has been placed.

E. All plumbing, electrical, mechanical and structural items to be under or passing through the gas vapor barrier shall be positively secured in their proper positions and appropriately protected prior to membrane application.

F. Gas vapor barrier shall be installed before placement of reinforcing steel. When not possible, all exposed reinforcing steel shall be masked by General Contractor prior to membrane application.

G. Expansion joints must be filled with a conventional waterproof expansion joint material.

H. Surface preparation shall be per manufacturer’s specification.

1.06 PRODUCT WARRANTY

Upon delivery and acceptance by the Owner of material specified by this Section, the materials manufacturer will provide a written one year standard material indicating the material conforms to its product specifications and is free of material defects. Factors affecting the results obtained from using this product including weather, equipment utilized, construction, workmanship and other variables are all beyond the manufacturer’s control.
Under this product warranty, manufacturer will provide replacement material, at no charge, for any product proven not to meet the material properties listed in the published product literature. This warranty is in lieu of any and all other warranties expressed or implied (including any implied warranty of merchantability or fitness for a particular use), and manufacturer shall have no further liability of any kind including liability for consequential or incidental damages resulting from any defects or delays caused by replacement or otherwise.

PART 2 - PRODUCTS

2.01 QUALIFICATIONS
The gas vapor barrier manufacturer must have produced at least 22 million square feet (2 million square meters) of gas vapor barrier, with at least 22 million square feet (2,000,000 square meters) installed.

2.02 MATERIALS

A. Fluid applied gas vapor barrier system - LIQUID BOOT®; a single-course, high-build, polymer modified asphaltic emulsion. Water borne and spray applied at ambient temperatures. A minimum thickness of 60 dry mils, unless specified otherwise as some cities and engineers may require a thicker membrane. Non-toxic and odorless. LIQUID BOOT® Trowel Grade has similar properties with greater viscosity and is trowel applied. Manufactured by CETCO, (800) 527-9948.

B. LIQUID BOOT® gas vapor barrier physical properties:

<table>
<thead>
<tr>
<th>GAS VAPOR MEMBRANE</th>
<th>TEST METHOD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Exposure (10% H₂SO₄ for 90 days)</td>
<td>ASTM D543</td>
<td>Less than 1% weight change</td>
</tr>
<tr>
<td>Benzene Diffusion</td>
<td>Tested at 43,000 ppm</td>
<td>2.90 x 10⁻¹¹ m²/day</td>
</tr>
<tr>
<td>Chemical Resistance: VOCs, BTEXs (tested at 20,000 ppm)</td>
<td>ASTM D543</td>
<td>Less than 1% weight change</td>
</tr>
<tr>
<td>Chromate Exposure (10% Chromium+ salt for 31 days)</td>
<td>ASTM E96</td>
<td>Less than 1% weight change</td>
</tr>
<tr>
<td>Diesel (1000 mg/l), Ethylbenzene (1000 mg/l), Naphthalene (5000 mg/l) and Acetone (500 mg/l) Exposure for 7 days</td>
<td>ASTM D543</td>
<td>Less than 1% weight change, Less than 1% tensile strength change</td>
</tr>
<tr>
<td>Radon Permeability</td>
<td>Tested by US Dept. of Energy</td>
<td>Zero permeability to Radon (222Rn)</td>
</tr>
<tr>
<td>Bonded Seam Strength Tests</td>
<td>ASTM D6392</td>
<td>Passed*</td>
</tr>
<tr>
<td>Micro Organism Resistance (Soil Burial)- average weight change,</td>
<td>ASTM D4068-88</td>
<td>Passed*</td>
</tr>
<tr>
<td>Methane Permeability</td>
<td>ASTM 1434-82</td>
<td>Passed*</td>
</tr>
<tr>
<td>Oil Resistance Test- average weight change, average tensile strength change, average tensile stress change, average elongation change, bonded seams, methane permeability</td>
<td>ASTM D543-87</td>
<td>Passed*</td>
</tr>
<tr>
<td>Heat Aging- average tensile strength change, average tensile stress change, average elongation change, bonded seams</td>
<td>ASTM D4068-88</td>
<td>Passed*</td>
</tr>
<tr>
<td>Dead Load Seam Strength</td>
<td>City of Los Angeles</td>
<td>Passed*</td>
</tr>
<tr>
<td>Environmental Stress-Cracking</td>
<td>ASTM D1693-78</td>
<td>Passed*</td>
</tr>
<tr>
<td>PCE Diffusion Coefficient</td>
<td>Tested at 6,000 mg/m³</td>
<td>2.74 x 10⁻¹⁴ m²/sec</td>
</tr>
<tr>
<td>TCE Diffusion Coefficient</td>
<td>Tested at 20,000 mg/m³</td>
<td>8.04 x 10⁻¹⁴ m²/sec</td>
</tr>
<tr>
<td>Soil Burial</td>
<td>ASTM E154-88</td>
<td>Passed</td>
</tr>
<tr>
<td>Water Vapor Transmission</td>
<td>ASTM E96</td>
<td>0.069 perms</td>
</tr>
</tbody>
</table>

POTABLE WATER

<table>
<thead>
<tr>
<th>TEST METHOD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicity Test</td>
<td>22 CCR 66696</td>
</tr>
<tr>
<td>Potable Water Containment</td>
<td>ANSI/NSF 61</td>
</tr>
<tr>
<td>Hydrostatic Head Resistance</td>
<td>ASTM D751</td>
</tr>
</tbody>
</table>

GENERAL INFORMATION

<table>
<thead>
<tr>
<th>TEST METHOD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze-Thaw Resistance (100 Cycles)</td>
<td>ASTM A142</td>
</tr>
<tr>
<td>Accelerated Weathering & Ultraviolet Exposure</td>
<td>ASTM D822</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D412</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D412</td>
</tr>
<tr>
<td>Tensile Bond Strength to Concrete</td>
<td>ASTM D413</td>
</tr>
</tbody>
</table>

*per City of Los Angeles approval for 100-mil LIQUID BOOT® gas vapor barrier.
**per NSF approval for 80-mil Liquid Boot® potable water containment membrane

C. LIQUID BOOT® Agency Approvals:
- City of Los Angeles Research Report # 24860-Approved for “LIQUID BOOT® Membrane for Below-Grade Waterproofing and Gas Barrier”
- United States Navy-Approved for “LIQUID BOOT® for Use World Wide to Waterproof Earth-Covered Steel Ammunition Storage”
- NSF International-NSF/61 approved for “Potable Water Tank Liner”
- Canadian Construction Materials Board-Approved for “Waterproofing and Damp Proofing”
- County of Los Angeles Department of public works-Approved for “LIQUID BOOT® Application as a Methane Gas Barrier”

LIQUID BOOT® GVB, version 4.3 2 © 2012 CETCO
LIQUID BOOT® 500

Contact CETCO before specifying or bidding LIQUID BOOT® 500 to insure LIQUID BOOT® 500 is appropriate for the project. LIQUID BOOT® 500 may be used in lieu of LIQUID BOOT® (described in section 2.01 B. above) where the membrane is exposed to methane and may be suited for low-level VOC applications. The Agency Approvals in section 2.01 C above do not apply to LIQUID BOOT® 500. The physical properties for LIQUID BOOT® 500 are as follows:

Note: LIQUID BOOT® 500 may tend to sag on vertical surfaces at higher ambient temperatures. When this condition occurs, use LIQUID BOOT® at these locations.

<table>
<thead>
<tr>
<th>GAS VAPOR MEMBRANE</th>
<th>TEST METHOD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation</td>
<td>ASTM D412</td>
<td>542%</td>
</tr>
<tr>
<td>Bond Seam Strength Tests</td>
<td>ASTM D6392</td>
<td>Passed</td>
</tr>
<tr>
<td>Methane Permeability</td>
<td>ASTM D1434</td>
<td>None detected</td>
</tr>
<tr>
<td>Water Vapor Permeability</td>
<td>ASTM E96</td>
<td>0.22 perms</td>
</tr>
</tbody>
</table>

- LIQUID BOOT® 500 Agency Approval - City of Los Angeles Research Report-RR 25549-Approved for “LIQUID BOOT® 500 Spray-Applied Membrane for Below-Grade Waterproofing and Gas Barrier”

E. Protection

On vertical surfaces, use UltraShield™ P-100 or other protections as approved by the manufacturer, project architect or engineer. On horizontal surfaces, use UltraShield™ G-1000 or other protections as approved by the manufacturer, project architect or engineer.

Due diverse jobsite conditions, all protection materials must be approved by the membrane manufacturer, including the use of the LIQUID BOOT® UltraShield products.

F. Prefabricated Drain Mat

1. On vertical surfaces, use UltraDrain™ 6200
2. On horizontal surfaces, use UltraDrain™ 9000

H. Gas vapor vent piping- GeoVent™ system

I. Base Geotextile

BaseFabric™ T-40 non-woven geotextile, unless otherwise specified and approved by membrane manufacturer. The heat-rolled side shall be used as the application surface. Some projects may require a heavier geotextile (BaseFabric™ T-60.)

J. Cold Joints, Cracks, Form Tie Holes: Covered with Hardcast CRT 1602 Tape 3” wide.

PART 3 - EXECUTION

3.01 EXAMINATION

All surfaces to receive gas vapor barrier shall be inspected and approved by the applicator at least one day prior to commencing work.

3.02 SURFACE PREPARATION- Provide 24 inch minimum clearance out from surfaces to receive the gas vapor barrier. The application surface shall be prepared and provided to the applicator in accordance with manufacturer’s specifications listed below:

A. Concrete/Shotcrete/Masonry

Concrete surfaces shall be light broom finish or smoother, free of any dirt, debris, loose material, release agents or curing compounds. Fill all voids more than 1/4 inch deep and 1/4 inch wide. Masonry joints, cold joints, and form joints shall be struck smooth. All penetrations shall be prepared in accordance with manufacturer’s specifications. Provide a 3/4 inch minimum cant of LIQUID BOOT®, or other suitable material as approved by manufacturer, at all horizontal to vertical transitions and other inside corners of 120° or less. Allow to cure overnight before the application of LIQUID BOOT®. All cracks or cold joints greater than 1/16 inch must be completely grouted with non-shrink grout as approved by engineer. Install Hardcast reinforcing tape over all cold joints, cracks and form tie holes (after holes and cracks are grouted).

B. Dirt & Gravel

The sub-grade shall be moisture conditioned and compacted to a minimum relative compaction of 90 percent or as specified by civil/geotechnical engineer. The finished surface shall be smooth, uniform, and free of debris and standing water. Remove all stones or dirt clods greater than 1/4 inch. (NOTE: Aggregate sub-bases shall be rolled flat, free from any protruding sharp edges). Penetrations shall be prepared in accordance with manufacturer’s specifications. All form stakes that penetrate the membrane shall be of rebar which shall be bent over and left in the slab. Trenches shall be cut oversize to accommodate gas vapor barrier membrane and protection course with perpendicular to sloped sides and maximum obtainable compaction. Adjoining grade shall be finish graded and compacted. Excavated walls shall be vertical or sloped back, free of roots and protruding rocks. Specific sub-grade preparation shall be designed by a qualified civil or geotechnical engineer. If organic materials with potential for growth (ie: seeds or grasses) exist within the sub-base, spray apply soil sterilant at the sterilant manufacturer’s recommended rate.
3.03 INSTALLATION

3.03.10 INSTALLATION ON CONCRETE/SHOTCRETE/MASONRY (Follow the procedures below carefully)

A. Refer to section 3.03.30, “Sealing Around Penetrations”, for procedures to seal around penetrations.

B. Provide a ¾” minimum cant of LIQUID BOOT®, or other suitable material as approved by manufacturer, at all horizontal to vertical transitions and other inside corners of 120° or less. Allow to cure overnight before the application of LIQUID BOOT®.

C. Delineate a test area on site with a minimum dimension of 10 feet by 10 feet (3m by 3m). Apply LIQUID BOOT® to a thickness of 60 mils and let it cure for 24 hours. Observe for blisters. If minor or no blistering occurs, proceed to the next step. (See note regarding blisters). If significant blistering does occur, apply a thin (10 mil) tack coat of LIQUID BOOT® “A” side without catalyst to the entire concrete surface and allow curing before proceeding. (See also information regarding blister repair).

D. Spray-apply LIQUID BOOT® to a 60 mil minimum dry thickness. Increase thickness to 100 dry mils if shotcrete is to be applied directly to membrane. If a second coat is required, remove any standing water from the membrane before proceeding with the second application.

E. Do not penetrate membrane. Keep membrane free of dirt and debris and traffic until a protective cover is in place. It is the responsibility of the General Contractor to insure that the membrane and the protection system are not penetrated.

F. After membrane has cured and checked for proper thickness and flaws, install protection material pursuant to manufacturer’s instructions. NOTE: All testing or inspection to be performed prior to placing protection course.

NON-HORIZONTAL SURFACES: Spray on non-horizontal surfaces should begin at the bottom and work towards the top. This method allows the product to adhere to the surface before hitting catalyst runoff.

NOTE: Due to the nature of concrete as a substrate, it is normal for some blistering to occur. This is caused by either concrete's tendency to off-gas or water that is temporarily trapped between the concrete and the membrane. With time and the applied pressure of backfill or over-slab, blisters will absorb into the concrete without detriment to the membrane. A small number of blister heads should be sampled and checked for proper membrane thickness. If the samples have the minimum required membrane thickness, then the remaining blisters should not be punctured or cut. If the samples have less than the minimum required membrane thickness, then the area can either be re-sprayed to obtain the proper thickness, or the blisters can be cut out and the area re-sprayed or patched with LIQUID BOOT® Trowel Grade.

3.03.20 INSTALLATION ON DIRT SURFACES AND MUDSLABS

A. Roll out BaseFabric™ geotextile on sub-grade with the heat-rolled side facing up. Overlap seams a minimum of 6 inches. Lay geotextile tight at all inside corners. Apply a thin 10 mil tack coat of LIQUID BOOT® “A” side without catalyst within the seam overlap. Line trenches with geotextile extending at least six inches (6”) onto adjoining sub-grade if slab and footings are to be sprayed separately.

B. Minimize the use of nails to secure the geotextile to the dirt subgrade. Remove all nails before spraying membrane, if possible. Nails that cannot be removed from the dirt subgrade are to be patched with geotextile or Hardcast reinforcing tape overlapping the nail head by a minimum of two inches (2”). Apply a thin tack coat of LIQUID BOOT® under the geotextile patch, when patching with geotextile.

C. Refer to section 3.03.30, “Sealing Around Penetrations”, for procedures to seal around penetrations.

D. Spray-apply LIQUID BOOT® onto geotextile to a 60 mil minimum dry thickness. Increase thickness to 100 dry mils if shotcrete is to be applied directly to membrane. If a second coat is required, remove any standing water from the membrane before proceeding with the second application.

E. Do not penetrate membrane. Keep membrane free of dirt, debris and traffic until a protective cover is in place. It is the responsibility of the General Contractor to insure that the membrane and the protection system are not penetrated.

F. After membrane has cured and checked for proper thickness and flaws, install protection material pursuant to manufacturer’s instructions. NOTE: All testing or inspection to be performed prior to placing protection course.

3.03.30 SEALING AROUND PENETRATIONS

3.03.31 OPTION 1

A. Clean all penetrations. All metal penetrations shall be sanded clean with emery cloth.

B. For applications requiring BaseFabric™ geotextile, roll out geotextile on sub-grade with the heat-rolled side facing up, overlapping seams a minimum of six inches (6”). Cut the geotextile around penetrations so that it lays flat on the sub-grade. Lay geotextile tight at all inside corners. Apply a thin (10 mil) tack coat of LIQUID BOOT® “A” side without catalyst within the seam overlap.
C. At the base of penetration install a minimum ¾ inch thick membrane cant of LIQUID BOOT®, or other suitable material as approved by manufacturer. Extend the membrane at a 60 mil thickness three inches (3”) around the base of penetration and up the penetration a minimum of three inches (3”). Allow to cure overnight before the application of LIQUID BOOT® membrane. (See manufacturer’s standard detail.)

D. Spray apply LIQUID BOOT® to an 60 mils minimum dry thickness around the penetration, completely encapsulating the collar assembly and to a height of one and one half inches (1 1/2”) minimum above the membrane as described in 3.03.31 C above. Spray-apply LIQUID BOOT® to surrounding areas as specified for the particular application. (SEE MANUFACTURER’S STANDARD DETAIL)

E. Allow LIQUID BOOT® to cure completely before proceeding to step "F".

F. Wrap penetration with polypropylene cable tie at a point two inches (2”) above the base of the penetration. Tighten the cable tie firmly so as to squeeze, but not cut, the cured membrane collar.

3.03.32 OPTION 2 (For Gas Vapor Membrane Only)

A. Clean all penetrations. All metal penetrations shall be sanded clean with emery cloth.

B. For applications requiring BaseFabric™ geotextile, roll out geotextile on sub-grade with the heat-rolled side facing up, overlapping seams a minimum of six inches (6”). Cut the geotextile around penetrations so that it lays flat on the sub-grade. Lay geotextile tight at all inside corners. Apply a thin (10 mil) tack coat of LIQUID BOOT® “A” side without catalyst within the seam overlap.

C. Spray-apply LIQUID BOOT® to surrounding areas as specified for the particular application to a 60 mil minimum dry thickness. At the base of penetration install a minimum 3/4 inch thick membrane cant of LIQUID BOOT®, or other suitable material as approved by manufacturer. Extend the membrane at 60 mil thickness up the penetration a minimum of three inches (3”). Allow curing overnight before proceeding to D (SEE MANUFACTURER’S STANDARD DETAIL)

D. Spray apply LIQUID BOOT® the membrane at an 60 mil thickness three inches (3”) around the base of penetration and up the penetration, completely encapsulating the collar assembly, to a height of one and one half inches (1 1/2”) minimum above the membrane as described in 3.03.32 C above. (SEE MANUFACTURER’S STANDARD DETAIL)

E. Allow LIQUID BOOT® to cure completely before proceeding to step "F".

F. Wrap penetration with polypropylene cable tie at a point two inches (2”) above the base of the penetration. Tighten the cable tie firmly so as to squeeze, but not cut, the cured membrane collar.

3.04 FIELD QUALITY CONTROL- Field Quality Control is a very important part of all LIQUID BOOT® applications. Applicators should check their own work for coverage, thickness, and all around good workmanship before calling for inspections.

The membrane must be cured at least overnight before inspecting for dry-thickness, holes, shadow shrinkage, and any other membrane damage. If water testing is to be performed, allow the membrane to cure at least 72 hours prior to the water test. When thickness or integrity is in question the membrane should be tested in the proper manner as described below. However, over-sampling defeats the intent of inspections. Inspectors should always use visual and tactile measurement to guide them. Areas suspected of being too thin to the touch should be measured with the gauges to determine the exact thickness. With practice and by comparing tactile measurements with those of the gauges, fingers become very accurate tools.

3.04.10 ON CONCRETE/SHOTCRETE/MASONRY & OTHER HARD SURFACES

A. Membrane may be checked for proper thickness with a blunt-nose depth gauge, taking one reading every 500 square feet. Record the readings. Mark the test area for repair, if necessary.

B. If necessary, test areas are to be patched over with LIQUID BOOT® to a 60 mils minimum dry thickness, extending a minimum of one inch (1”) beyond the test perimeter.

3.04.20 ON DIRT AND OTHER SOFT SUBSTRATES

A. Samples may be cut from the membrane and geotextile sandwich to a maximum area of 2 square inches. Measure the thickness with a mil-reading caliper, per 500 sq. feet. Deduct the plain geotextile thickness to determine the thickness of LIQUID BOOT® membrane. Mark the test area for repair.

B. Voids left by sampling are to be patched with geotextile overlapping the void by a minimum of two inches (2”). Apply a thin tack coat of LIQUID BOOT® under the geotextile patch. Then spray or trowel-apply LIQUID BOOT® to a 60 mils minimum dry thickness, extending at least three inches (3”) beyond geotextile patch.

3.04.30 SMOKE TESTING FOR HOLES (Optional) - Holes or other breaches in the membrane can be detected by conducting a smoke test. This involves pumping smoke under the membrane for a specified period of time, under a specified pressure, which varies from project to project. Contact CETCO for information about this test at 800-527-9948.